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Calculation of Unsteady Flows Due to Small Motions of Cylinders 
in a Viscous Fluid 
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S U M M A R Y  
The problem of small oscillations of a cylinder of general cross-section in a viscous fluid is formulated in terms of 
integral equations. Numerical solutions of the integral equation are presented for the special case of a ribbon of zero 
thickness. 

1. Introduction 

The specific problem of interest concerns small sinusoidal vibrations of a ribbon of finite width 
"2a, but negligible thickness, moving normal to itself in a viscous fluid, and the final result of 
this report is a numerical solution for the force components (added mass and damping co- 
efficients) on the ribbon. Care is taken with the numerical solution to ensure a correct treatment 
of the singularity at the edges of the ribbon, and also to seek a result which is of uniform accu- 
racy with respect to the frequency o- of oscillation. Results computed over a range of the para- 
meter fl = oa2/v from 0.1 to 1000 indicate that the linearized forces on the ribbon differ little 
from those on a circular cylinder of diameter 2a. 

Although the above is the problem of most direct interest and was studied because of possible 
application to prediction of the effect of bilge keels on ships, a more general formulation is 
used to derive an integral equation, which is solved numerically only for the above special case. 
By use of Laplace transforms and a version of Green's theorem, the initial-value problem for 
arbitrary small motions of a deformable cylinder of arbitrary cross-section is reduced to 
solution of coupled integral equations, the unknowns being the pressure and vorticity distri- 
butions on the cross-section. 

2. Unsteady Stokes Flow in Two Dimensions 

In this paper we shall be concerned exclusively with the linearized Navier-Stokes equations, 
which describe unsteady Stokes flows. We shall in addition restrict attention to flows which are 
caused by the movement of cylindrical bodies. The surface of the cylinder, which need no t  
in the general case be rigid, may move in any direction, but in order to justify linearization we 
must insist that those components of its velocity which are perpendicular to the cylinder axis 
are small in some sense. 
It is not proposed at this time to investigate the degree of uniformity of the linearization pro- 
cess, or to attempt to find second-order solutions (e.g. steady "acoustic" streaming flows), 
interesting as such questions are. We shall accept that if A is some measure of the amplitude 
of thetransverse motions of the cylinder, then as A ~ 0  the exact solution of the Navier-Stokes 
equations tends almost everywhere to a solution of the Stokes equations. Although this is a 
reasonable viewpoint mathematically, it does of course limit severely the practical applica- 
tion of the results in cases (such as the ribbon oscillation in which we are most interested !) 
where we have reason to suspect that the amplitude A has to be extremely small in order to 
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30 E. O, Tuck 

prevent non-linear convective effects (e.g. vortex generation at the edges) from becoming 
dominant. 

If u = iu (x, y, t) + jv  (x, y, t) + kw (x, y, t) is the fluid velocity vector and p (x, y, t) the pressure, 
the z or k direction being along the cylinder axis, then the linearized problem is specified by 
the equations 

Ou 1 
- Vp+vV2u,  (2.1) 

Ot p 

V ' u = 0 ,  (2.2) 

in the flow region exterior to a fixed curve C. This curve may be taken to define the equilibrium 
or average cross-section of the cylinder, as in Fig. 1. The boundary condition at infinity is that 
u + 0  in a sufficiently rapid manner, while on C we have 

u = U ( x ,  y, t ) ,  (2.3) 

where U is a given velocity vector. For a rigid body in translation U =  U(t) only, but we may 
for the general discussion allow an arbitrary given time and space distribution of velocity on C, 

IN FLUID; 

V49 = =zVz ~ 
yaw = =Zw . ~  

' ~ n ' W  known 

o,,,p, w n unknown 

Figure 1. Sketch of the boundary-value problem for oscillating cylinders of arbitrary cross-section in a viscous fluid. 

corresponding to a possible deforming cylinder. For simplicity, and indeed without loss of 
generality in the present linear model, we take our initial conditions to correspond to a state 
of rest. 

The continuity equation (2.2) is as usual satisfied identically by introduction of a stream 
function t)(x, y, t) satisfying 

u = ~',, v = - 0~, (2.4) 

and if we set 

~o = v ~ -  uy= -V2~b, (2,5) 

the k component of the curl of (2A) yields 

&n 
- -  == ~ t  VV 2 ~0 (2.5) 

while the k component of eq. (2.1) itself is 

0w 
O-T = vVZw" (2.7) 

Thus the motion w in the direction of the cylinder axis (which need not be small) is not coupl- 
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Calculation of unsteady flows in a viscous fluid 31 

ed with the linearized motions in the cross-sections, but satisfies the same differential equa- 
tion as the k-component co of the vorticity. 

Before applying Green's theorem to obtain formal solutions of these equations it is con- 
venient to entirely remove the time dependence by taking Laplace transforms. For example, 

w* (x, y, s)= S w  (x, y, t) = w(x, y, t)e-S'dt (2.8) 
o 

would define a new analytic function w* of s, in the right-half s-plane. However, in the spirit of 
Heaviside we shall immediately abandon the star notation, using the same variable for a 
function and its S-transform, the dependence on s rather than t indicating which is meant. 
The S- t ransform of eq. (2.7) gives simply 

V 2 W = ~2 W (2.9) 

w h e r e  (z 2 =  s/v, with an identical equation for e). The equation satisfied by the stream function 
is then 

V40 = cr 2 V 2 ~ .  (2.10) 

In the following section we write down integral equivalents of these partial differential equa- 
tions. 

Taking the inverse transform once the solution for the transformed quantity has been found 
is a routine, if formidable, task using the inversion integral. However, since we are mainly 
interested in steady oscillations, we recall a standard result from linear systems analysis, that 
the amplitude of the ultimate response of a stable linear system to an input which is sinusoidal 
at radian frequency a is obtained, in magnitude and phase, by setting s = iG in the Laplace 
transform. From this viewpoint, the Laplace transform variable s is merely a convenient symbol 
for io-, with the advantage that we may avoid any convergence questions that might arise by 
allowing s to have a small positive real part throughout all but the final step in the analysis. 

Before leaving this question it is well to point out that stability in the present context is 
sometimes only narrowly achieved. While viscosity provides dissipation, so that there can be 
no poles in the right-half s-plane, there is a kind of singular behavior at the origin s = 0, as a 
result of Stokes' paradox. For as s or ~ 0 ,  (2.10) reduces to the biharmonic equation, which has 
n o  non-trivial solution bounded at infinity. An investigation such as that given in Appendix 
I indicates that the transfer function S (force)/S(velocity) behaves like (log s)- 1 as s~0.  Thus 
Stokes' paradox reveals itself if we observe that the velocity response to a step function force 
increases indefinitely, like S - 1  (log s/s)~ log t. Conversely, the transient force required to set 
up an oscillation about a fixed point decays like S -  a (s/log s) ~ t -  2 (log t)- a, while if the mean 
position of the cylinder moves through a finite distance the decay rate is like t -  1 (log t)- 2, and 
if it moves an infinite distance, only like (log t)- 1. 

3. Integral Representations 

If f2(x, y; x'y') is any solution of 

V / f 2 -  cr Q = 6(x -x ' )6 (y -y ' )  (3.1) 

and w(x, y) is any solution of (2,9), then by application of Green's theorem we have 

w(x', y') = jc (wO,-w,  f2)dl, (3.2) 

where suffix n implies differentiation normal to the boundary C, out of the field of flow. Strictly 
the boundary of the flow should include a closing contour at infinity, but we rely on our 
boundary condition at infinity to eliminate contribution from that source. When w really does 
mean the z-component of velocity, which is given on C, eq. (3.2) provides us immediately with an 
integral equation to solve for the unknown stress w,. This equation has been discussed by 
Levine (1957) and others, for several choices of C and f2. 
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32 E. O. Tuck 

Since co and w satisfy the differential equation, (3.2) also applies when o9 is substituted for w 
throughout. However, now both o9 and co, are unknown on C; what we really need is an integral 
representation of the equation (2,10) for 0. We establish this representation in a rather oblique 
manner, with physical significance. On taking the divergence of (2.1) we obtain the well-known 
result that the pressure p is harmonic, i.e. VZp = 0. Define q (x, y) to be the harmonic conjugate 
of p, satisfying the Cauchy-Riemann equations Px = qr, Pr = - qx. By inspection of (2.1) after ~ -  
transformation, it is easy to see that these equations are satisfied if we choose 

q = -#(og+e2~b). (3.3) 

Since V2q= 0, we can use any Green's function G(x, y; x', y') for Laplace's equation, satisfying 
V 2 G = 6, to obtain 

= i, ~ (qG,-q ,G)dl .  (3.4) q 

Substituting (3.3) in (3.4) and using (3.2) to eliminate o9 from the lefthand side, we have 

t) = f :  [(OG"-tl/"G)-(og~P"-og"TJ)]dl' (3.5) 
d ~  

where 

1 (O-G)  (3.6) 
~ = - - c 7  

is the Green's function for eq. (2,10), i.e. satisfies V 4 7 j -  ~2VZ ~ = 6. 
Equation (3.5) is essentially the Green's theorem for the partial differential equation (2.10), 

and indicates how ~ is knoWn in the flow region if all four quantities 0, ~',, c~ = - V 20, bg, = 
- V 2 ft, are known on C. Since ~ and r  are known (or readily obtainable from U) but ~, cO, are 
not known on C, we need two equations to determine o), o9,. These are the result of applying 
on C successively (3.5) itself and the derivative of (3.5) normal to C, leading to a pair of coupled 
integral equations to determine o9, o9,. It is somewhat more convenient to replace the unknown 
o9, by  an equivalent unknown p, setting 

1 
('On = - -  0~2 On - -  --  q ,  

# (3.7) 

1 = -~2  0,  - - pt , 
# 

where p~= ~p/Ol= ~q/On is the tangential derivative of the pressure along C. On substitution 
of (3.7) in (3.5) and integration by parts, the integrated part vanishes if we assume continuous 
pressure on C, leaving 

O =  fc IOG, -O ,  f2-oo~I', + l-pTt,]dl.  (3.8) 
# 

In this form of the Green's theorem, the basic unknowns are explicitly exhibited as the vorticity 
09 and pressure p on the surface. This is especially convenient for calculation of the forces on the 
cylinder, as we shall observe in the following section. 

These integral formulations are of course useless for the purpose of obtaining numerical 
solutions, if we are unable to find and compute the Green's functions involved. We should like 
to force the Green's functions to satisfy boundary conditions on C, since this would eliminate 
some terms from the integral equations, but in the general case this is impossible. Thus we 
must fall back on Green's functions which are defined as analytic everywhere in the x, y plane 
except at x = x', y = y'. These are functions of R = { (x - x') 2 + ( y -  y,)2}~ only, and may be found 
and computed without trouble, the formulae being 

i 
G = ~ log R (3.9) 

Journal  o f  Engineering Math. ,  Vol. 3 (1969) 29-44 



Calculation of unsteady flows in a viscous fluid 33 

1 Ko(~R) (3.10) f 2 -  2re 

1 
~g - 2roe z (log R+Ko(eR)) (3.11) 

where Ko is the modified Bessel function of the third kind, zero order. It should be noted that G 
and f2 are logarithmically singular at R = 0 but ~g = O (R e log R), and that G and ~ are log- 
arithmically singular at infinity but f2 is exponentially small. 

4. The Forces and Moment on the Cylinder 

The vector force F and moment M about the origin on any three-dimensional body with surface 
S, moving in any manner whatsoever in an incompressible viscous fluid which is at rest at 
infinity, are given exactly by 

= js [-pdS+#ta x dS], (4.1) F 

M = Is [r x (-pdS+po~ x dS)+2#u x dS]. (4.2) 

The merit of these formulae (which can be obtained readily from the corresponding formulae 
involving the stress tensor) is that they are written directly in terms of the basic unknowns of 
pressure p and vorticity o~ on the body surface. Any method, numerical or otherwise, which 
provides p and to as primary output, also gives by quadrature the forces and moments, without 
recourse to calculation of the components of the stress tensor. 

For the special case when S is the surface of a cylinder with cross-section C, eq. (4.1) has a 
z-component which merely gives the expected skin friction per unit length of cylinder, 

= k" F = p f,. [wx dy-  wy dx] F~ 

= ~ (c w, dl. (4.3) 

The force components per unit length in transverse directions are 

F~, = i.F = (.. [-pdy+#codx], (4.4) 

F, =) 'F  = f [pdx+#cody], (4.5) 
3 c 

and the moment per unit length about the cylinder axis is 

Mz = k. M = fc [p(xdx + ydy)+ pe~(xdy-ydx) -2#(Udx + V dy)]. (4.6) 

It is interesting to observe that by re-introducing q from eq. (3.3) and defining the complex 
quantities ( = x  + iy, f(O = P +  iq, eqs. (4.4) and (4.5) may be combined to give 

Fx+iF ,=-ps  ic Od~+i fcf(Od~. (4.7) 

The first integral in (4.7) is known, while the second can be evaluated using the calculus of resi- 
dues once we establish the analytic behavior of the function f (0 ,  e.g. as ff--.oe. However, we 
shall make no use of eq. (4.7). 

Equations (4.4) and (4.5) give the forces on the cylinder directly in terms of the primary 
unknowns of the problem. From these forces, quantities which may be called added mass and 
damping coefficients may be obtained as in the following example. Suppose the cylinder pos- 
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sesses geometrical symmetry about the y-axis, and oscillates sinusoidally as a rigid body along 
the y-axis, with v=  V(t) = Vo ei't. Then if the steady-state force response calculated from (4.5) 
is written as 

Vr(t ) = - ( k - i k ' ) p r c a  2 iaVo ei't , (4.8) 

where 24 is the length of intercept of the cylinder section on the x-axis, then the coefficient k is 
the ratio between the added (or "virtual") mass of the cylinder and the displaced mass p~a 2 
per unit length of a circular cylinder of radius a. Similarly k' may be interpreted as a damping co- 
efficient, the component of force in phase with the velocity, per unit velocity, being 

--  pTza 2 ok '  = ~ (Fy/V o e"t) . (4.9) 

For example, in 1851 Stokes (see Rosenhead 1963, p, 390) gave the following formula for k, k' as 
functions of n0n-dimensional frequency/~ = aa2/v, in the case when C is a circle: 

k - i k ' =  1 4KI(w/~) 
x//-fl Ko(~//-fl), (4.10) 

Ko, K1 being modified Bessel functions of the third kind. Values of k~ k' calculated from (4.10) 
are shown in Fig. 7. 

5. Zero Thickness Ribbons 

The integral representation (3,8) applie s when C is any closed curve in the (x, y) plane. Consider 
now the special case C = C_ + C+ where C_, C+ are the "bottom" and "top" sides of a cut in the 
plane as in Fig. 2. This cut represents a ribbon of zero thickness, and will be supposed to move 

p (x,O+) 
, 11 ~(x,o+) 

(. 

tt ~(x,o_) 
p (X,O_) 

Figure 2. The boundary-value 

V+- V 

C+ LU§ U ii 
O . l l  

C_ CU_:  U 

V_=V 

I L  

X 

~roblem for a straight ribbon of negligible thickness. 

without relative motion of its top and bot tom faces. That is, we shall require continuity of ~ and 
~b, across the cut. Then (3.8) reduces to 

_ 1 A p ~ t ] d l  (5.1) 

where Am, Ap are the jumps in vorticity and pressure across the cut, e.g. A~o=O[c + -•lc-. 
Equation (5.1) does not appear to be a great ,simplification relative to (3.8), since the only por- 
tion of (3.8) eliminated involved terms which were in any case known. 

HoweVer, in the special case illustrated by Fig. 2 of a ribbon whose equilibrium configura- 
tion is a straight segment, a substantial simplification can be made. Without loss of generality 
the ribbon can be taken to extend from ( - a ,  0) to (a, 0), in which case dl = dx, ~/~n = ~/~y on 
C_. Then (5.1) states that 

~b(x',y') = Am(x)~Pr(x,O; x ' , y  ') - -j Ap(x)gJx(x,O;'x ' ,y '  ) d x .  
- - a  

But if we now apply this equation on y '=0 ,  and use the formula (3.11) for ~, which implies 
~r(x, 0; x',0) =0,  we find 
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lfo 
O(x', O)= - ~ -~ Ap(x) 7ix(x,0; x',O)dx . (5.3) 

Similarly, on setting y' = 0  after differentiating (5.2) with respect to y', we have 

f: U (x') = 0y' (x', 0) = Aco (x) ~y,, (x, 0; x', 0) dx.  (5.4) 
a 

Thus the normal and tangential oscillations of the Hbbon are described by separate, un- 
coupled, integral equations (5.3) and (5.4) respectively. Normal motion V leads to a pressure 
jump Ap which is a solution of (5.3), but no jump in vorticity across the ribbon, while tangential 
motion U gives a vorticity jump Am but a continuous pressure. These conclusions could no 
doubt  be obtained by purely physical arguments. 

In the subsequent analysis we shall be concerned with normal motion, and thus with solu- 
tions ofeq. (5.3). On differentiation with respect to x' we obtain 

V(x') = - 0x,(x',0)= Ap(x)~xx,(x,O; x',O)dx, (5.5) 
~ a  

which is an integral equation of the form 

I_ Ap(x)g(7lx- x'[)dx= #V(x') , (5.6) 
a 

where the kernel function L = k v ,  is obtainable from the formula (3.11) for t/,, 
1 d 2 

L(z) - 27r dz 2 (log z + Ko(z)) . (5.7) 

For small values of its argument the kernel function has a logarithmic singularity, with an 
expansion of the form: 

L(z) = - ~n (log z + ? + � 8 9  2) + O(z21og z), (5.8) 
M 

while for large [z[ we have 

C ( z ) -  + = e -  1 + O  . (5.9) 
2~z 2 ,~8rcz 

Although it is possible (with care) to differentiate eq. (5.6) once more under the integral sign 
in order to obtain a singular integral equation with a Cauchy kernel, for which there exists a 
large body of general theory (e.g. Muskhelishvili (1953)), we prefer to attack eq. (5.6) itself by 
direct numerical methods. However, we observe in passing a result from the theory of singular 
integral equations, namely that unless V (x) satisfies at least one very special side condition, any 
solution Ap (x) is necessarily unbounded at the ends x = + a, and indeed possesses an inverse 
square root singularity at each end. 

6. Numerical Solution for Steady Normal Oscillations 

If we set s = icr, e = x//x/~, in eq. (5.6) we can interpret this equation as a relationship between 
complex amplitudes in a steady sinusoidal oscillation. That is, after transients have decayed, 
the pressure jump due to V(x) e i~t is Ap(x) e i`', where V and Ap are related by (5.6). The particu- 
lar case of greatest interest here, and the only case for which we shall present calculations, cor- 
responds to rigid translatory oscillations, V(x)= Vo = constant. It is convenient to define a 
non-dimensional co-ordinate ~ = x/a, pressure jump P(4) = (a/pVo) Ap (x), and frequency 
fl = cra2/v. Then for the oscillation described above, eq. (5.6) becomes 

f~ = (6.1) P(~)L(x/~[~-~'])d~ 1. 
-1  

The method we use to solve (6.1) numerically is quite direct, and consists simply of replacing 
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integration by summation, using a suitable quadrature formula. The integral equation now 
becomes a matrix-vector equation, which we solve by explicit inversion of the kernel matrix. 
The only sophistication in the numerical analysis comes in the decision as to which is a "suita- 
ble" quadrature formula. In spite of the arguments presented below, if we wished to achieve 
greatest economy in computer time a good case could be made for using the crudest possible 
method, e.g. the trapezoidal rule with equal intervals. Equal interval methods with a difference 
kernel have the advantage that if N intervals are used, only 2N evaluations of the kernel func- 
tion are needed rather than N:,  and the trapezoidal rule has the advantage of equal weights, 
which eliminates at least 2N multiplications. However, since it was not expected that computer 
time would be a major problem*, the method used here is a little more sophisticated. 

Three matters which might be cause for concern are (i) the logarithmic singularity of the 
kernel at ~ = ~', (ii) the square root singularities of P (4) at ~ = __+ 1 and (iii) the fact that if fi is 
large, the kernel contains a term (see (5.9)) which oscillates rapidly while decaying to zero. In 
fact a brute force method which simply pays no heed to the integrable singularities described in 
(i) and (ii) above is almost bound to work (see e.g. Davis and Rabinowitz 1965) albeit with some 
sacrifice in accuracy for a given N. As far as the logarithmic singularity is concerned, we should 
be thankful for its existence and make no attempt to "eliminate" it, even if this were possible, 
for this singularity of the kernel function makes the resulting kernel matrix diagonally dom- 
inant, and hence docile in its inversion properties. The square root singularities can be removed 
by changing variable from r to 0, where ~ = sin 0, say, or equivalently by using an unequal 
interval quadrature formula, with a square root bias towards the ends. For instance, if we use a 
dissection ,of the form ~= ~ j = - c o s  rcj/N, j = 0 , . . . ,  N, this accomplishes exactly the same 
purpose as if we used an equal interval method in conjunction with the change of variable to 0. 

The objection (iii) above concerning rapid oscillations of the integrand could of course be 
overcome by allowing N to increase with fl, but since computer time increases like N 3 more 
efficient procedures are desirable. The method we use is to observe that we have no reason to 
expect the unknown P(~) to vary rapidly (an expectation confirmed by the solution itself) and 
therefore approximate P (~) but not the kernel L in our quadrature formula. Thus if we appro- 
ximate that P (4) = Pj = constant on each segment ~j < ~ < ~j+ 1, we have from (6.1) 

N - 1  ( ~ j + l  
E PJ L(x / /~[ r162162  = 1. (6.2) 

j = o JCj 

We now force this equation to hold at the mid-point ~ = ~k=~k+�89162 1 of the k'th segment, 
leading to a matrix equation of the form 

N - 1  
PjAki=l,  k--0, 1 . . . . .  N - 1  (6.3) 

j = o  

where 

Akj = Jr L ( x ~ l ~ - r  ~. (6.4) 

Of course if we now had to resort to further numerical quadrature to evaluate these matrix 
elements Ak~, we should have gained nothing, for the same objection would apply to the new 
quadrature, for large ft. Fortunately the integration in (6.4) can be performed analytically and 
exactly, since the kernel L(z) is already defined in (5.7) as the derivative of another function. 
Thus we can observe that 

a I ! 1 - + 

1 
- 8r 2ni~/-fl F(x/~(r (6.5) 

* The program in fact requires about one minute of I.B.M. 7094 time per frequency, for the finest dissection used, 
N =49. 
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where 

F(z) 1 = - + ker'(z)+ikei'(z), 
2 

z > 0 ,  (6.6) 

and F ( - z ) =  -F(z).  The functions ker', kei' are Kelvin functions (Abramowitz and Stegun, 
1964, p. 379), for which fast and accurate off-the-self computing procedures are available. Hence 
we have finally for the matrix element, 

1 
Akj -- 2rcix/-[3 [F(N/~(~j+ 1 - ~))--F(N/~(~ j -  ~ ) ) ] ,  (6.7) 

a formula which allows setting up the matrix [Akj] with just N 2 calls upon the subroutine for 
the function F, no more than would be required for any other quadrature formula with unequal 
intervals. It should be observed in passing that the above method, while especially designed to 
provide uniform accuracy as fl increases, has at the same time eliminated any problems with the 
logarithmic singularity of the kernel, for we have integrated straight through it in the analytic 
evaluation of the diagonal elements Akk. 

The immediate output from solution of the matrix equation (6.3) by inversion of lAg j] is the 
complex pressure jump function P(0.  Using this we obtain from (4.5) the force on the ribbon, 

Fr= - f ~ Ap(x)dx 

_ #V ~ ~1 P(~)d~. (6.8) 
a J _ l  

The integral in (6.8) may be evaluated as the simple sum 

f l  P(Od~ ~ ~Pj(~j+I-~j ) ,  
-1  j 

since the bias in the interval lengths automatically takes care of the square root singularity in 
P(~). From the real and imaginary parts of the complex force we can extract the damping 
coefficient and added mass respectively, as in eqs. (4.8), (4.9). 

It is also interesting and easy to compute flow quantities in the fluid, on or off the ribbon. 
In particular the vertical component of velocity on the real axis is readily obtained from (5.5), 
and we have 

v(a~, O)/Vo = P(Og(x/@l~-~'l)d~ . (6.9) 
- 1  

For [~'[ < 1 this is just a re-statement of the integral equation (6.1), and can be used to provide a 
check, since we should find v= Vo. Values were actually computed from (6.9) for 4' =0.95 
through 1.33. 

A small amount of numerical experimentation was performed to find an adequate value of N. 
The somewhat arbitrary upper limit imposed by the available complex matrix inversion routine 
was N =  50, and values of 21, 31 and 49 were actually used. N=21  seemed already to be very 
accurate except at the highest frequencies. For instance at fl = 1.0 the change in the force compo- 
nents in going from N=21  to N =  31 was only in the 6th significant figure, while at fl= 100.0 
this change had reached the 4th significant figure. At fl= 1000.0 the values obtained for the 
force at N = 21, 31, 49 were proportional to 3.47 + i34.91, 3.29 + i35.07, 3.20 + i35.10 respectively. 
The accuracy of the N = 4 9  result appears to be better than _+0.1 in both real and imaginary 
parts, which represents a more serious relative error in the real (dissipative) part than in the 
larger imaginary part. In spite of the uniformizing procedure adopted, it would appear that we 
are at fl = 1000.0 coming close to the upper limit of frequency for which acceptable accuracy 
could be attained; without this procedure we could probably not have even gone this far. 
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7. Computed Results 

The pressure jump across the ribbon, primary output from the computer program, is shown in 
Figs. 3-5. Figure 3 gives the imaginary part of P (4), i.e. the component of pressure jump in phase 
with the acceleration of the ribbon, for the lower frequencies fi = 0.1 - 1.0. Also shown as a 
dashed curve is the asymptotic solution (A1.4) as fi--.0, with the constant C2 chosen according 
to (A1.5) at fl = 0.1. The agreement between the computed and asymptotic solutions is already 
good at fi = 0.1. As fl increases, the curvature of the pressure plot near the center of the plate 
decreases, and already at fl = 1.0 the curve has become slightly concave downwards. 

In Fig. 4, which is a continuation of Fig. 3 to higher frequencies fl = 10.0-1000.0, we have 
plotted JP/fl instead of J P ,  in order to demonstrate the progression of the computed results 
towards the asymptotic solution (Al:9), shown dashed. The result at fl = 1000.0 is already quite 
close to the asymptotic limit, but notice that this limit is non-uniform near the end ~ = 1.0, and 
the curve for fl = 1000.0 turns up rapidly towards its required square-root singularity. This 
rapid break-away is :of course the reason for the ultimate loss in accuracy of the numerical 
solution, discussed in the previous section, for even with a square root bias, we eventually lack a 
sufficient density of intervals near ~ = 1.0. The component ~ P  in phase with the velocity is 
shown in Fig. 5, scaled with respect to x/~, because we expect the asymptotic behavior as 
f l~oe to be O(x/~ ). 

In Fig. 6 we present the real part of the computed velocity component v (a~, 0) on the x-axis 
in the fluid. For ~ < 1 we should find v = Vo, and any departure from this value must be inter- 
preted as numerical error. In fact, except for fl = 1000.0 the departure from v = Vo, is too small 
to see, in the scale of the figure. The result shown for fl = 1000.0 exhibits a slight "smoothing-off'  
of the right-angle bend in the curve at ~ = 1.0, the extent of the smoothing depending on the 
number N of elements used, here N = 49. As ~ increases above 1.0, Nv decreases from Vo, 
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Figure 3. Pressure j ump  J P  (~) across the r ibbon in phase With acceleration. Computa t ions  for low frequencies fl = 0.1 
to fl = 1.0. 
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Figure 5. Pressure jump ~P(~) across the ribbon in phase with velocity. Computations for fl=0.1 to r =  1000.0, 
scaled with respect to ~ .  
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continuously but with negative infinite slope for all fl < ~ .  Again, we observe that the limit 
fl-~ oo is non-uniform near ( =  1.0, as the limiting potential flow eq. (AI.10), shown dashed) has 
a negative infinite velocity at the sharp edge, ~ J, 1.0. For larger (, the computed results at 
fl= 100.0 and fl= 1000.0 are quite close to the potential flow, whereas the lower frequency 
cases are beginning to look more like the singular Stokes limit (A1.7) as fl~0, in which 
v,~ - log ~ as (--~ ~ .  The computed results for the imaginary part ofv are not shown, but behave 
in a similar manner. 

Finally, integration of P ( 0  as in eq. (6.8) gives the force coefficients k, k' defined by eq. (4~ 
which are plotted in Fig. 7 against ft. A logarithmic scale is used for both abscissa and ordinate. 
Note that k is tending to unity and k' to zero like C//~ as fl-> o% for some constant C ~ 3.2. 
Also shown as dashed curves are the corresponding results for a circular cylinder, calculated 
from Stokes' expression (4.10). It is remarkable how close the values are for the two differently- 
shaped cylinders over the whole four decades of frequency, from very slow oscillations ade- 
quately described by the steady Stokes equations all the way up to rapid oscillations of a 
predominantly inviscid nature. The difference between the dashed and solid curves is never 
more than 15~ in this frequency range. For instance, at high frequency the limiting circle 
result for k' is 2x/2/fl~, about 13~ lower than the computer estimate for the ribbon. 

8. Concluding Remarks 

Although the only numerical calculations presented here concern a very special oscillation of a 
special ribbon-like cylinder, there is no reason in principle why the integral equations derived 
for more general situations could not be solved in a similar manner. The most direct extension 
would be to solve first for more general modes of motion, while retaining the straight ribbon 
geometry. In a sense we have treated the worst possible case here, for if the ribbon moves in 
either of the two other directions we should have less cause to doubt linearization (no cause 
at all for axial oscillations !). 

The straight ribbon has the advantages that first of all the integral equations for normal and 
tangential flow are de-coupled, and secondly that the simple frequency-uniformization used 
here works. It should be noted that these advantages of this particular geometry could be 
exploited in numerical solutions to other physical problems, e.g., in elastodynamic, electro- 
magnetic or acoustic diffraction and radiation. The fact that the viscous flow problem for more 
general geometries requires solution of a pair of coupled integral equations is not in itself a 
great limitation, merely doubling the order of matrix to be inverted for a given accuracy, but 
the inability to render the solution even approximately uniformly valid with respect to frequen- 
cy is disturbing. In the present viscous oscillation case, where the argument of the kernel is 
decaying exponentially as well as oscillating rapidly, this may not matter too much, but it 
would be a crucial point in any numerical solution to a diffraction problem. 

Problems where the body is not necessarily rigid, in which the velocity on its instantaneous 
surface is a given function of position, are of great interest in connection with swimming 
motions of fish and small organisms (see e.g. Tuck 1968), and even perhaps in connection with 
boundary-layer stabilization by pliable surfaces. One mathematical peculiarity of such mo- 
tions, which could have application to swimming, is that although the pressure jump must be 
unbounded at the ends of a ribbon in rigid-body oscillation, it will always be possible to combi- 
ne a rigid translation with a suitable bending mode in such a way as to cancel the square-root 
singularity. In any swimming mode of a ribbon-like organism, it would seem likely that nature 
would prefer this to be the case. Since the numerical solution proceeds with no extra difficulty 
when the righthand side of the integral equation is a general function of position rather than a 
constant, there would seem plenty of scope for further numerical analysis of this problem. 

The application of the present results to estimation of the effect of bilge keels and similar 
roll-damping devices on ships is minimal, and really we have no right to expect anything else. 
A quick glance at experimental measurements of the bilge-keel damping effect, e.g. Landweber 
and Thews 1938, shows that the phenomenon is non-linear. Presumably the main effect of such 
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drag-producing fins comes from vortex shedding at their sharp tips during the portion of the 
cycle at which the tips are moving most rapidly. We might have some hope for a quasi-steady 
inviscid vortex theory of such a flow, the principal characteristic of which would be a quadratic 
dependence of the damping force on the instantaneous rolling velocity. 

However, it is of interest to consider how much a keel would add to the linear part of the 
damping, even though this can be significant only for very low amplitudes of roll. It is easy to see 
that we can increase the skin-friction part of the linear damping significantly with quite small 
keels. For instance, at frequencies high enough for the boundary layer thickness ~ to be 
small compared with the radius of curvature R of a section, the skin-friction part of the drag on a 
rolling cylinder can be calculated from the classical Rayleigh solution (e.g. Landau and 
Lifschitz 1959, p. 90) for a flat plate, which gives for the tangential stress in phase with the velo- 
city, 

2" Px/v/~a" (instantaneous tangential velocity). 

Hence if a clean circular cylinder of radius R, length L, is rotating with oscillatory angular 
velocity 0, the linear moment resisting it is 

Moiro o = & 2 RL R20 
,/2 

~ 4 ,3p~R3LO.  (8.1) 

Suppose now we attach a fin of width 2a to the cylinder. Then, using our computer estimate 
k' = 3.2/~,ffi for the damping force on the fin and neglecting interaction with the circle, we find 
an additional contribution to the damping moment of 

Mri .= 3.2 px//~.TzaL:(R+a)20 

,-~10.1~ 1 + "px/~R3LO. (8.2) 

:): i.e. Mr~n/Moircle~2.3 -R + Thus at a/R=0.1, corresponding to a keel width only �89 of 

the radius of the cylinder, we can more than double the linear viscous drag by adding four sym- 
metrically located keels. This is not enough, of course, to explain the efficacy of bilge keels in 
practice, which is a non-linear phenomenon as discussed above, but could be important as a 
scale effect if rolling tests were made on models which were too small. Skin friction is not the 
only linear damping mechanism on sections without keels, and is in fact negligible at full scale, 
relative to wave damping. On the other hand, for small models of 1-2 feet beam, viscous and 
surface tension effects can dominate (see Vossers 1962 p. 57), and the predicted increase in the 
linear viscous part of the damping when bilge keels are fitted could be significant. 

Appendix I 

High and Low Frequency Asymptotes 

In this appendix we consider in a heuristic manner the limiting forms of the integral equation 
(6.1) as f l~0 and as ]3--, ~ .  In viewing the results of this analysis one should bear in mind the 
corresponding limits of the boundary-value problem, respectively quasi-steady Stokes' flow 
as fl~0, and inviscid potential flow as f l~ ~ .  
Substituting the small-argument expansion (5.8) of the kernel into the integral equation (6.1), 
we have 

f l P(~)[logl~-~' l+C1]d~ = -4re ,  (AI.1) 
- 1  
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where 

C 1 = log x / ~ + 7 + 2 - 1 o g  2 (A1.2) 

is a constant. On differentiation of (AI.1) with respect to 4', there results the homogeneous 
singular integral equation 

-1 4 - 4 '  - 0 '  (A1o3) 

which has a solution (Tricomi 1957, p. 174) 

c2 (A1.4) v(0=/w_42 
for any constant C 2. But this is a solution of (A1.1) only for a particular value of C 2, 

. . ,  

= 4/(log 2 -  C1) 

= 4/(0"309-1~ x /~ ) "  (A1.5) 

Other quantities of interest can be written directly in terms of this constant C2, e.g. the force 
on the ribbon is just 

Fy = - rc C2, (A1.6) a 

and the velocity across the x-axis is 

v(a4,0)/Vo = t l  ' C2 . ./7:~ _ 141<1 (A1.7) 
t l  + ~ -  log { [ 4 [ - x / ~ -  1), 14] > 1 .  

Note the manifestation of Stokes' paradox, in that this limiting solution does not satisfy the 
boundary condition at infinity. 

More generally, with s instead of ia, results such as (A1.5-A1.6) show that the &o-transform of 
the force on the ribbon behaves like (log s)- 1 times the &~ (here unity) of the given 
velocity of translation. This is used in the text to estimate rates of decay of transients. It should 
be noted that such behavior is not confined to ribbons of zero thickness. The classical result 
(4.10) of Stokes on oscillating circular cylinders also has inverse logarithmic behavior as fl~0, 
and it is no doubt possible to prove that this is a characteristic of the unsteady Stokes' equation, 
for any cylinder cross-section. 

The high frequency limit f i~  oo is apparently more singular, since the kernel resulting from 
use of the first term in the expansion (5.9) is not integrable. However, since we expect a solution 
satisfying P (_+ 1)= 0 in this limit (from consideration of the limiting boundary-value problem) 
we can integrate by parts, yielding a singular integro-differential equation 

f l p,(Od4 -~ ~_~, - - 2 r c i f l ,  (Al.8) 

which has the bounded solution 

P(O = 2ifixf l - ~2. (A1.9) 

This is a singular limit near 4 = + 1, since P(4)/fi is unbounded there for all fl < oo. 
Although the above is hardly a rigorous derivation, the result (A1.9) is exactly what we would 
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'find by solving the limiting boundary-value problem, corresponding to potential flow normal 
to the ribbon. The force is in phase with the acceleration, so that there is no damping, and the 
added mass is equal to that of the circumscribing circular cylinder. In order to find a non-zero 
damping we should have to carry the large fl expansion further, e.g. by the Wiener-Hopf 
technique, in the manner of Carrier (Gortler and Tollmein 1955, p. 13) and Levine (1957). 
Direct boundary-layer methods, as in the method proposed by Segel (1960) do not seem to 
work for cylinders with sharp edges. From the boundary-layer nature of the large fl approxi- 
mation we can infer without actual performing this expansion that ~ P ( 0  = O (,,/fl), and hence 
that k'-~C/~ for some constant C. The trend of the computed results (Fig. 7) for large fl would 
suggest C ~ 3.2 as compared with 2~/2 ~ 2~8 for Stokes' circular cylinder result. 

The velocity distribution on the x-axis is easily obtained either from (6.9) or from the limiting 
potential flow, in the form: 

1, 141 < 1 
v(a~,O)/Vo= 1 - l ~ l / ~ l , l r  (AI.10) 

This limiting velocity distribution is singular as ~ ~ 1, although v is continuous for all fl < oe. 
On the other hand, in contrast to the limit fi--+0, this limit does satisfy the boundary condition 
at oe, since v = O (4-1) as r  oe. Note also that this velocity is real, i.e. entirely in phase with the 
imposed velocity of the ribbon. 
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